
Building 3D Models Using Plastic
Construction Bricks

Nathan Cournia, Karl Rasche and Andrew Van Pernis

{acnatha, rkarl, arakel}@vr.clemson.edu.

Clemson University

Computer Science Department Colluquium Series – p.1

Outline

Computer Science Department Colluquium Series – p.2

Outline

Motivation

Representing 3D Models As Voxels

Representing 2D Images As Voxels

Converting Voxels To Plastic Construction
Bricks

Results

Computer Science Department Colluquium Series – p.3

Motivation

Computer Science Department Colluquium Series – p.4

Problem Definition

Problem: Given a three-dimensional model how
can we build that model using plastic
construction bricks?

Our answer: Create a voxelization of the model,
then represent that voxelization as a set of
LDraw parts which have been carefully selected
to produce a buildable version of the model.

Computer Science Department Colluquium Series – p.5

Problem Definition

Problem: Given a three-dimensional model how
can we build that model using plastic
construction bricks?

Our answer: Create a voxelization of the model,
then represent that voxelization as a set of
LDraw parts which have been carefully selected
to produce a buildable version of the model.

Computer Science Department Colluquium Series – p.5

Problem In Pictures

→

Computer Science Department Colluquium Series – p.6

Problem In Pictures

→

Computer Science Department Colluquium Series – p.6

Motivation

Artistic expression
Mosaics
Sculptures
Music videos
Animations

Technical idea + creativity⇒ publication

Block construction turns out to be an
interesting problem

Computer Science Department Colluquium Series – p.7

http://www.vr.clemson.edu/~arakel/files/samford_hall.jpg
http://www.vr.clemson.edu/~arakel/files/whitestripes.mov
http://www.vr.clemson.edu/~arakel/files/montypython.mov

Motivation

Artistic expression
Mosaics
Sculptures
Music videos
Animations

Technical idea + creativity⇒ publication

Block construction turns out to be an
interesting problem

Computer Science Department Colluquium Series – p.7

http://www.vr.clemson.edu/~arakel/files/samford_hall.jpg
http://www.vr.clemson.edu/~arakel/files/whitestripes.mov
http://www.vr.clemson.edu/~arakel/files/montypython.mov

Motivation

Artistic expression
Mosaics
Sculptures
Music videos
Animations

Technical idea + creativity⇒ publication

Block construction turns out to be an
interesting problem

Computer Science Department Colluquium Series – p.7

http://www.vr.clemson.edu/~arakel/files/samford_hall.jpg
http://www.vr.clemson.edu/~arakel/files/whitestripes.mov
http://www.vr.clemson.edu/~arakel/files/montypython.mov

Representing 3D Models As Voxels

Computer Science Department Colluquium Series – p.8

Voxelization

Given a polygonal model, generate a set of
voxels

Computer Science Department Colluquium Series – p.9

What is a voxel?

A small 3D box with some properties
(density, color, etc)

Short for volume element

3D counterpart of a 2D pixel

Computer Science Department Colluquium Series – p.10

Voxelization

Process of converting a geometric
representation of a synthetic model into a set
of voxels

Some processes are easier to use when
operating on voxel data

Computing Volume
CSG (Intersection, Union, etc)
Collision Detection

The reverse is also true; Voxels are not
optimal for everything

Computer Science Department Colluquium Series – p.11

Voxelization

Several methods for generating a
voxelization exist

Casting Rays
Scan Converting

Most are not pretty to code

Can be slow

Can we speed it up? Yes, use the GPU

See http://www.cs.sunysb.edu/ vislab/projects/volume/Papers/Voxel/

Computer Science Department Colluquium Series – p.12

http://www.cs.sunysb.edu/~vislab/projects/volume/Papers/Voxel/

Hardware Accelerated Voxelization

Modern graphics hardware is fast (exceeding
Moore’s Law)

Modern graphics hardware is programmable

Computationally expensive algorithms are
being offloaded to the GPU

Fast Fourier Transform
Global Illumination Computations
Path Finding (AI)
Collision Detection

Computer Science Department Colluquium Series – p.13

Hardware Accelerated Voxelization

Turns out we don’t need to use the
programmable GPU

Standard fixed function color and depth
buffers will suffice

Color buffer stores the color of each pixel in
the rendered scene

But what is the depth buffer?

Computer Science Department Colluquium Series – p.14

Depth Buffer

Also known as the Z-buffer

Stores the depth of each pixel in the scene

Values range from [0,1]

Usually initialized to 1

Smaller values are closer to the near clip
plane (camera)

Traditionally used for hidden surface removal

Computer Science Department Colluquium Series – p.15

Depth Buffer Example

Computer Science Department Colluquium Series – p.16

HW Voxelization Algorithm

Center mesh around world origin

Set viewport to N×N, where N is the size of a
dimension in the N×N×N voxel lattice

Render scene through a tightly fitted
orthographic (parallel) projection from each
side of the model’s bounding box

Record depth and color buffers from each
render

Produces six set of images (6 color buffer
images, 6 depth buffer images)

See http://www.acm.org/jgt/papers/KarabassiEtAl99b/

Computer Science Department Colluquium Series – p.17

http://www.acm.org/jgt/papers/KarabassiEtAl99b/

Depth/Color Buffer Visualization

Front/Back

Computer Science Department Colluquium Series – p.18

Depth/Color Buffer Visualization

Left/Right

Computer Science Department Colluquium Series – p.19

Depth/Color Buffer Visualization

Top/Bottom

Computer Science Department Colluquium Series – p.20

Determing if a Voxel is "On"

For each voxel in the lattice, compute the
distance to each side of the cube

Test if this distance is bounded by the depth
buffers in each axis

If so, voxel is inside, otherwise, its outside

Holes not visable from outside the object will
be filled

Computer Science Department Colluquium Series – p.21

Determining a Voxel’s Color

Find the depth map which is closest to the
voxel

Look up the voxel’s color in the depth map’s
correspoding color map

Interior voxels share the same color as
closest surface voxel

Computer Science Department Colluquium Series – p.22

Voxelization Algorithm Notes

Works for polygonal and analytical models

Efficiency is independent of model
complexity

Voxelizes data in O(n)

Does not handle concave models

Computer Science Department Colluquium Series – p.23

Voxel Visualization

Can view voxel data as slices

Viewing voxel data is useful for many
application, specifically in medicine

See http://www.nlm.nih.gov/research/visible/visible_human.html

Computer Science Department Colluquium Series – p.24

http://www.vr.clemson.edu/~arakel/files/bauul.mov
http://www.vr.clemson.edu/~arakel/files/vman.mpg
http://www.nlm.nih.gov/research/visible/visible_human.html

Plastic Construction Brick Specifics

Plastic Construction Bricks are not cubes

A 1×1 brick has a 5
6 aspect ratio

Model must be squashed during voxelization
to perserve aspect ratio

Computer Science Department Colluquium Series – p.25

Demo

Computer Science Department Colluquium Series – p.26

Representing 2D Images As Voxels

Computer Science Department Colluquium Series – p.27

Voxelization of Images

Goal: Given any 2D image, output a
voxelization

Pixels directly correspond to a voxel slice

Perform image scaling to reduce/enlarge to
desired number of voxels

Computer Science Department Colluquium Series – p.28

Brick Mosaics

Studs-up Studs-out

X-Y plane X-Z plane

Computer Science Department Colluquium Series – p.29

Brick Mosaics

Studs-up Studs-out
X-Y plane X-Z plane

Computer Science Department Colluquium Series – p.29

Giving Voxels Color

Platic Construction Bricks have a limited
number of colors

Convert image to brick palette

Problem: Limited number of colors in brick
palette causes banding

Computer Science Department Colluquium Series – p.30

Converting to Brick Palette

Solution: Dither the image

Dithering is the addition of a sub-quantum
signal (often high frequency noise) to a
signal of interest that is being quantized

Many dithering algorithms exist

Computer Science Department Colluquium Series – p.31

Dithering

We use Floyd-Steinberg dithering

Spreads error in quantization over
neighboring pixels

Computer Science Department Colluquium Series – p.32

Generating a Construction Plan

We use a simple greedy algorithm that
processes 1 brick row at a time

Computer Science Department Colluquium Series – p.33

Converting Voxels To Plastic
Construction Bricks

Computer Science Department Colluquium Series – p.34

What Is LDraw?

Originally, DOS programs LDraw and LEdit
with a file format representing several
different plastic construction brick shapes

Many editors have been developed using the
LDraw parts file format

Programs exist to convert to a variety of 3D
applications

Maintained by a standards committee now

Computer Science Department Colluquium Series – p.35

LDraw File Format

ASCII text

First value is an integer indicating line type

Line Type

0 comment or meta-command

1 reference to another LDraw file

2 line between two points

3 triangle

4 quadrilateral

5 conditional line between two points

Computer Science Department Colluquium Series – p.36

LDraw File Format (cont.)

Reference line type is as follows:
1 <color> <transformation matrix> <file name>

Line between two points is as follows:
2 <color> <point1> <point2>

Triangle line type is as follows:
3 <color> <point1> <point2> <point3>

Quadrilateral line type is as follows:
4 <color> <point1> <point2> <point3> <point4>

Computer Science Department Colluquium Series – p.37

LDraw Conventions

Brick Sizes - given using a
Width×Length×Height notation

Part Numbers - each different brick is given a
unique part number; attempts to match those
used by the LEGO™ Corporation

Colors - based on those used by the LEGO™
Corporation; each is assigned a unique
integer

Computer Science Department Colluquium Series – p.38

The Simple Answer

Replace each voxel with a 1x1 brick of the
appropriate color. Interior voxels can be
assigned any color desired.

Problem: This solution does not create a
buildable version of the model.

Computer Science Department Colluquium Series – p.39

The Simple Answer

Replace each voxel with a 1x1 brick of the
appropriate color. Interior voxels can be
assigned any color desired.

Problem: This solution does not create a
buildable version of the model.

Computer Science Department Colluquium Series – p.39

Algorithm Goals

Replace neighboring voxels of the same
color with an appropriate brick

Check for support for a brick in the layer
above or below

Use 2×n bricks whenever possible

Avoid 1×1 bricks whenever possible

Fix building impossibilities

Computer Science Department Colluquium Series – p.40

A Greedy Algorithm

Voxelization is of size xsize × ysize × zsize

Consider only an X-Z slice of the voxelization

Search for adjacent voxels in the X direction
first

Search for adjacent voxels in the Z direction
second

Replace neighboring voxels with the largest
brick possible

Computer Science Department Colluquium Series – p.41

A Greedy Algorithm’s Bricks

1 × 1 1 × 2 1 × 3 1 × 4 1 × 6 1 × 8

2 × 2 2 × 3 2 × 4 2 × 6 2 × 8

Computer Science Department Colluquium Series – p.42

A Greedy Algorithm (cont.)

for (i=ysize − 1; i≥0; i--){

for (k=0; k< zsize; k++){

j=0;

while (j< xsize){

start x = FindFirstVoxelX();

end x = FindLastVoxelX();

while(start x ≤ endx){

length x = endx - start x + 1;

if (length x == 1){

startz = k;

endz = FindLastVoxelZ();

lengthz = endz - startz + 1;

Computer Science Department Colluquium Series – p.43

A Greedy Algorithm (cont.)

if (lengthz == 1)

AddBrickZ(1×1);

else if (lengthz == 2)

AddBrickZ(1×2);

else if (lengthz == 4)

AddBrickZ(1×4);

else

AddBrickZ(1×3);

start x += 1;

}

else if (length x%2 != 0){

AddBrickX(1×3);

start x += 3;

}

Computer Science Department Colluquium Series – p.44

A Greedy Algorithm (cont.)

else if (length x ≤ 8){

AddBrickX(1×length x);

start x += length x;

}

else if (length x == 10){

AddBrickX(1×6);

start x += 6;

AddBrickX(1×4);

start x += 4;

}

Computer Science Department Colluquium Series – p.45

A Greedy Algorithm (cont.)

else if (length x == 12){

AddBrickX(1×6);

start x += 6;

AddBrickX(1×6);

start x += 6;

}

else{

AddBrickX(1×8);

start x += 8;

}

}

j = endx + 1;

}

}

}

Computer Science Department Colluquium Series – p.46

Improvements

Alternate primary greedy direction between
X and Z

Use L-shaped corner pieces

Connect “floating” pieces

Use bricks taller than 1

Push smaller bricks to the center

Computer Science Department Colluquium Series – p.47

Results

Computer Science Department Colluquium Series – p.48

Bauul

Computer Science Department Colluquium Series – p.49

Beachball

Computer Science Department Colluquium Series – p.50

Bunny

Computer Science Department Colluquium Series – p.51

Construction Plans

Use a program called LPub

Insert step meta-commands between each
X-Z slice

Example plans

Some reworking done during build

Computer Science Department Colluquium Series – p.52

http://www.vr.clemson.edu/~arakel/bunny/bunny-00.html

References

Computer Science Department Colluquium Series – p.53

References

“A Fast Depth-Buffer-Based Voxelization Algorithm”
Evaggelia-Aggeliki Karabassi, Georgios
Papaioannou, and Theoharis Theoharis.
ACM Journal of Graphics Tools. 4(4):5-10,
1999.

LDraw website http://www.ldraw.org

“Volume Graphics” Arie Kaufman, Daniel Cohen
and Roni Yagel. IEEE Computer. Vol.26, No.
7. July 1993. pg. 51-64.

Computer Science Department Colluquium Series – p.54

http://www.ldraw.org

Media

All source code publically available (via CVS)

uber: http://graphics.vr.clemson.edu

CVS:
http://jet.vr.clemson.edu/viewcvs/viewcvs.cgi/uber/demos/lego/?cvsroot=UBER

Computer Science Department Colluquium Series – p.55

http:/graphics.vr.clemson.edu
http://jet.vr.clemson.edu/viewcvs/viewcvs.cgi/uber/demos/lego/?cvsroot=UBER

	Outline
	Outline
	Motivation
	Problem Definition
	Problem In Pictures
	Motivation
	Representing 3D Models As Voxels
	Voxelization
	What is a voxel?
	Voxelization
	Voxelization
	Hardware Accelerated Voxelization
	Hardware Accelerated Voxelization
	Depth Buffer
	Depth Buffer Example
	HW Voxelization Algorithm
	Depth/Color Buffer Visualization
	Depth/Color Buffer Visualization
	Depth/Color Buffer Visualization
	Determing if a Voxel is "On"
	Determining a Voxel's Color
	Voxelization Algorithm Notes
	Voxel Visualization
	Plastic Construction Brick Specifics
	Demo
	Representing 2D Images As Voxels
	Voxelization of Images
	Brick Mosaics
	Giving Voxels Color
	Converting to Brick Palette
	Dithering
	Generating a Construction Plan
	Converting Voxels To Plastic Construction Bricks
	What Is LDraw?
	LDraw File Format
	LDraw File Format (cont.)
	LDraw Conventions
	The Simple Answer
	Algorithm Goals
	A Greedy Algorithm
	A Greedy Algorithm's Bricks
	A Greedy Algorithm (cont.)
	A Greedy Algorithm (cont.)
	A Greedy Algorithm (cont.)
	A Greedy Algorithm (cont.)
	Improvements
	Results
	Bauul
	Beachball
	Bunny
	Construction Plans
	References
	References
	Media

