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Motivation
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Problem Definition

Problem: Given a three-dimensional model how
can we build that model using plastic
construction bricks?

Our answer: Create a voxelization of the model,
then represent that voxelization as a set of
LDraw parts which have been carefully selected
to produce a buildable version of the model.
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Problem In Pictures

→
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Motivation

Artistic expression
Mosaics
Sculptures
Music videos
Animations

Technical idea + creativity⇒ publication

Block construction turns out to be an
interesting problem
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Representing 3D Models As Voxels
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Voxelization

Given a polygonal model, generate a set of
voxels
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What is a voxel?

A small 3D box with some properties
(density, color, etc)

Short for volume element

3D counterpart of a 2D pixel
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Voxelization

Process of converting a geometric
representation of a synthetic model into a set
of voxels

Some processes are easier to use when
operating on voxel data

Computing Volume
CSG (Intersection, Union, etc)
Collision Detection

The reverse is also true; Voxels are not
optimal for everything
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Voxelization

Several methods for generating a
voxelization exist

Casting Rays
Scan Converting

Most are not pretty to code

Can be slow

Can we speed it up? Yes, use the GPU

See http://www.cs.sunysb.edu/ vislab/projects/volume/Papers/Voxel/
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Hardware Accelerated Voxelization

Modern graphics hardware is fast (exceeding
Moore’s Law)

Modern graphics hardware is programmable

Computationally expensive algorithms are
being offloaded to the GPU

Fast Fourier Transform
Global Illumination Computations
Path Finding (AI)
Collision Detection
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Hardware Accelerated Voxelization

Turns out we don’t need to use the
programmable GPU

Standard fixed function color and depth
buffers will suffice

Color buffer stores the color of each pixel in
the rendered scene

But what is the depth buffer?
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Depth Buffer

Also known as the Z-buffer

Stores the depth of each pixel in the scene

Values range from [0,1]

Usually initialized to 1

Smaller values are closer to the near clip
plane (camera)

Traditionally used for hidden surface removal
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Depth Buffer Example
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HW Voxelization Algorithm

Center mesh around world origin

Set viewport to N×N, where N is the size of a
dimension in the N×N×N voxel lattice

Render scene through a tightly fitted
orthographic (parallel) projection from each
side of the model’s bounding box

Record depth and color buffers from each
render

Produces six set of images (6 color buffer
images, 6 depth buffer images)

See http://www.acm.org/jgt/papers/KarabassiEtAl99b/
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Depth/Color Buffer Visualization

Front/Back
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Depth/Color Buffer Visualization

Left/Right
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Depth/Color Buffer Visualization

Top/Bottom
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Determing if a Voxel is "On"

For each voxel in the lattice, compute the
distance to each side of the cube

Test if this distance is bounded by the depth
buffers in each axis

If so, voxel is inside, otherwise, its outside

Holes not visable from outside the object will
be filled
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Determining a Voxel’s Color

Find the depth map which is closest to the
voxel

Look up the voxel’s color in the depth map’s
correspoding color map

Interior voxels share the same color as
closest surface voxel
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Voxelization Algorithm Notes

Works for polygonal and analytical models

Efficiency is independent of model
complexity

Voxelizes data in O(n)

Does not handle concave models

Computer Science Department Colluquium Series – p.23



Voxel Visualization

Can view voxel data as slices

Viewing voxel data is useful for many
application, specifically in medicine

See http://www.nlm.nih.gov/research/visible/visible_human.html
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Plastic Construction Brick Specifics

Plastic Construction Bricks are not cubes

A 1×1 brick has a 5
6 aspect ratio

Model must be squashed during voxelization
to perserve aspect ratio
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Demo

Computer Science Department Colluquium Series – p.26



Representing 2D Images As Voxels
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Voxelization of Images

Goal: Given any 2D image, output a
voxelization

Pixels directly correspond to a voxel slice

Perform image scaling to reduce/enlarge to
desired number of voxels
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Brick Mosaics

Studs-up Studs-out

X-Y plane X-Z plane
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Giving Voxels Color

Platic Construction Bricks have a limited
number of colors

Convert image to brick palette

Problem: Limited number of colors in brick
palette causes banding
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Converting to Brick Palette

Solution: Dither the image

Dithering is the addition of a sub-quantum
signal (often high frequency noise) to a
signal of interest that is being quantized

Many dithering algorithms exist
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Dithering

We use Floyd-Steinberg dithering

Spreads error in quantization over
neighboring pixels
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Generating a Construction Plan

We use a simple greedy algorithm that
processes 1 brick row at a time
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Converting Voxels To Plastic
Construction Bricks
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What Is LDraw?

Originally, DOS programs LDraw and LEdit
with a file format representing several
different plastic construction brick shapes

Many editors have been developed using the
LDraw parts file format

Programs exist to convert to a variety of 3D
applications

Maintained by a standards committee now
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LDraw File Format

ASCII text

First value is an integer indicating line type

# Line Type

0 comment or meta-command

1 reference to another LDraw file

2 line between two points

3 triangle

4 quadrilateral

5 conditional line between two points
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LDraw File Format (cont.)

Reference line type is as follows:
1 <color> <transformation matrix> <file name>

Line between two points is as follows:
2 <color> <point1> <point2>

Triangle line type is as follows:
3 <color> <point1> <point2> <point3>

Quadrilateral line type is as follows:
4 <color> <point1> <point2> <point3> <point4>
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LDraw Conventions

Brick Sizes - given using a
Width×Length×Height notation

Part Numbers - each different brick is given a
unique part number; attempts to match those
used by the LEGO™ Corporation

Colors - based on those used by the LEGO™
Corporation; each is assigned a unique
integer
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The Simple Answer

Replace each voxel with a 1x1 brick of the
appropriate color. Interior voxels can be
assigned any color desired.

Problem: This solution does not create a
buildable version of the model.
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Algorithm Goals

Replace neighboring voxels of the same
color with an appropriate brick

Check for support for a brick in the layer
above or below

Use 2×n bricks whenever possible

Avoid 1×1 bricks whenever possible

Fix building impossibilities
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A Greedy Algorithm

Voxelization is of size xsize × ysize × zsize

Consider only an X-Z slice of the voxelization

Search for adjacent voxels in the X direction
first

Search for adjacent voxels in the Z direction
second

Replace neighboring voxels with the largest
brick possible
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A Greedy Algorithm’s Bricks

1 × 1 1 × 2 1 × 3 1 × 4 1 × 6 1 × 8

2 × 2 2 × 3 2 × 4 2 × 6 2 × 8
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A Greedy Algorithm (cont.)

for (i=ysize − 1; i≥0; i--){

for (k=0; k< zsize; k++){

j=0;

while (j< xsize){

start x = FindFirstVoxelX();

end x = FindLastVoxelX();

while(start x ≤ endx){

length x = endx - start x + 1;

if (length x == 1){

startz = k;

endz = FindLastVoxelZ();

lengthz = endz - startz + 1;
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A Greedy Algorithm (cont.)

if (lengthz == 1)

AddBrickZ(1×1);

else if (lengthz == 2)

AddBrickZ(1×2);

else if (lengthz == 4)

AddBrickZ(1×4);

else

AddBrickZ(1×3);

start x += 1;

}

else if (length x%2 != 0){

AddBrickX(1×3);

start x += 3;

}
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A Greedy Algorithm (cont.)

else if (length x ≤ 8){

AddBrickX(1×length x);

start x += length x;

}

else if (length x == 10){

AddBrickX(1×6);

start x += 6;

AddBrickX(1×4);

start x += 4;

}
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A Greedy Algorithm (cont.)

else if (length x == 12){

AddBrickX(1×6);

start x += 6;

AddBrickX(1×6);

start x += 6;

}

else{

AddBrickX(1×8);

start x += 8;

}

}

j = endx + 1;

}

}

}
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Improvements

Alternate primary greedy direction between
X and Z

Use L-shaped corner pieces

Connect “floating” pieces

Use bricks taller than 1

Push smaller bricks to the center
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Results
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Bauul
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Beachball
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Bunny
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Construction Plans

Use a program called LPub

Insert step meta-commands between each
X-Z slice

Example plans

Some reworking done during build
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Media

All source code publically available (via CVS)

uber: http://graphics.vr.clemson.edu

CVS:
http://jet.vr.clemson.edu/viewcvs/viewcvs.cgi/uber/demos/lego/?cvsroot=UBER
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